Configurer Marlin


Configuration.h

traduction en commentaires des fonctions utiles pour utiliser une autre carte mère dans une imprimante Leapfrog creatr (hs)

/**

 * Marlin 3D Printer Firmware

 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]

 *

 * Based on Sprinter and grbl.

 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm

 *

 * This program is free software: you can redistribute it and/or modify

 * it under the terms of the GNU General Public License as published by

 * the Free Software Foundation, either version 3 of the License, or

 * (at your option) any later version.

 *

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

 * GNU General Public License for more details.

 *

 * You should have received a copy of the GNU General Public License

 * along with this program.  If not, see <http://www.gnu.org/licenses/>.

 *

 */

 

/**

 * Configuration.h

 *

 * Basic settings such as:

 *

 * - Type of electronics

 * - Type of temperature sensor

 * - Printer geometry

 * - Endstop configuration

 * - LCD controller

 * - Extra features

 *

 * Advanced settings can be found in Configuration_adv.h

 *

 */

#ifndef CONFIGURATION_H

#define CONFIGURATION_H

 

/**

 *

 *  ***********************************

 *  **  ATTENTION TO ALL DEVELOPERS  **

 *  ***********************************

 *

 * You must increment this version number for every significant change such as,

 * but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.

 *

 * Note: Update also Version.h !

 */

#define CONFIGURATION_H_VERSION 010100

 

//===========================================================================

//============================= Getting Started =============================

//===========================================================================

 

/**

 * Here are some standard links for getting your machine calibrated:

 *

 * http://reprap.org/wiki/Calibration

 * http://youtu.be/wAL9d7FgInk

 * http://calculator.josefprusa.cz

 * http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide

 * http://www.thingiverse.com/thing:5573

 * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap

 * http://www.thingiverse.com/thing:298812

 */

 

//===========================================================================

//============================= DELTA Printer ===============================

//===========================================================================

// For a Delta printer replace the configuration files with the files in the

// example_configurations/delta directory.

//

 

//===========================================================================

//============================= SCARA Printer ===============================

//===========================================================================

// For a Scara printer replace the configuration files with the files in the

// example_configurations/SCARA directory.

//

 

// @section info

 

// User-specified version info of this build to display in [Pronterface, etc] terminal window during

// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this

// build by the user have been successfully uploaded into firmware.

//#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.

#define SHOW_BOOTSCREEN

#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1

#define STRING_SPLASH_LINE2 WEBSITE_URL         // will be shown during bootup in line 2

 

//

// *** VENDORS PLEASE READ *****************************************************

//

// Marlin now allow you to have a vendor boot image to be displayed on machine

// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your

// custom boot image and them the default Marlin boot image is shown.

//

// We suggest for you to take advantage of this new feature and keep the Marlin

// boot image unmodified. For an example have a look at the bq Hephestos 2

// example configuration folder.

//

//#define SHOW_CUSTOM_BOOTSCREEN

// @section machine

 

/**

 * Select which serial port on the board will be used for communication with the host.

 * This allows the connection of wireless adapters (for instance) to non-default port pins.

 * Serial port 0 is always used by the Arduino bootloader regardless of this setting.

 *

 * :[0, 1, 2, 3, 4, 5, 6, 7]

 */

//#define SERIAL_PORT 0 // cette ligne doit être désactivée (pour reconnaître la carte Olimex)

 

// Optional custom name for your RepStrap or other custom machine

// Displayed in the LCD "Ready" message

//#define CUSTOM_MACHINE_NAME "Leapfrog Creatr HS"

#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ //Personal revision number for changes to THIS file.

#define STRING_CONFIG_H_AUTHOR "tyros" //Who made the changes.

#define LEAPFROG_FIRMWARE_VERSION "2.5"

#define LEAPFROG_MODEL "CreatrHS"

 

/**

 * This setting determines the communication speed of the printer.

 *

 * 250000 works in most cases, but you might try a lower speed if

 * you commonly experience drop-outs during host printing.

 *

 * :[2400, 9600, 19200, 38400, 57600, 115200, 250000]

 */

#define BAUDRATE 250000 // la même vitesse doit être déclarée dans le Slicer. (250000 pour utiliser la Olimex)

 

// In steps that needs to be taken from the second extruder to the first extruder

// See M50 Gcode commando for more info 

#define EXTR2_X_OFFSET 15.00  // entrer l'écart de position entre E0 et E1 (en mm)

#define EXTR2_Y_OFFSET 0.00

 

// Enable the Bluetooth serial interface on AT90USB devices

//#define BLUETOOTH

 

// The following define selects which electronics board you have.

// Please choose the name from boards.h that matches your setup

#ifndef MOTHERBOARD

  #define MOTHERBOARD 80 // carte Rumba = 80

#endif

 

 

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)

// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)

//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

 

// This defines the number of extruders

// :[1, 2, 3, 4]

#define EXTRUDERS 2 // nbre d'extrudeurs

 

// Enable if your E steppers or extruder gear ratios are not identical

//#define DISTINCT_E_FACTORS

 

// For Cyclops or any "multi-extruder" that shares a single nozzle.

//#define SINGLENOZZLE

 

// A dual extruder that uses a single stepper motor

// Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z

//#define SWITCHING_EXTRUDER

#if ENABLED(SWITCHING_EXTRUDER)

  #define SWITCHING_EXTRUDER_SERVO_NR 0

  #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1

  //#define HOTEND_OFFSET_Z {0.0, 0.0}

#endif

 

/**

 * "Mixing Extruder"

 *   - Adds a new code, M165, to set the current mix factors.

 *   - Extends the stepping routines to move multiple steppers in proportion to the mix.

 *   - Optional support for Repetier Host M163, M164, and virtual extruder.

 *   - This implementation supports only a single extruder.

 *   - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation

 */

//#define MIXING_EXTRUDER

#if ENABLED(MIXING_EXTRUDER)

  #define MIXING_STEPPERS 2        // Number of steppers in your mixing extruder

  #define MIXING_VIRTUAL_TOOLS 16  // Use the Virtual Tool method with M163 and M164

  //#define DIRECT_MIXING_IN_G1    // Allow ABCDHI mix factors in G1 movement commands

#endif

 

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).

// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).

// For the other hotends it is their distance from the extruder 0 hotend.

#define HOTEND_OFFSET_X {0.0, -EXTR2_X_OFFSET} // (in mm) for each extruder, offset of the hotend on the X axis

#define HOTEND_OFFSET_Y {0.0, -EXTR2_Y_OFFSET}  // (in mm) for each extruder, offset of the hotend on the Y axis

 

/**

 * Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN

 *

 * 0 = No Power Switch

 * 1 = ATX

 * 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

 *

 * :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }

 */

#define POWER_SUPPLY 0

 

#if POWER_SUPPLY > 0

  // Enable this option to leave the PSU off at startup.

  // Power to steppers and heaters will need to be turned on with M80.

  //#define PS_DEFAULT_OFF

#endif

 

// @section temperature

 

//===========================================================================

//============================= Thermal Settings ============================

//===========================================================================

 

/**

 * --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table

 * 

 * Temperature sensors available:

 *

 *    -3 : thermocouple with MAX31855 (only for sensor 0)

 *    -2 : thermocouple with MAX6675 (only for sensor 0)

 *    -1 : thermocouple with AD595

 *     0 : not used

 *     1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)

 *     2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)

 *     3 : Mendel-parts thermistor (4.7k pullup)

 *     4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!

 *     5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)

 *     6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)

 *     7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)

 *    71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)

 *     8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)

 *     9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)

 *    10 : 100k RS thermistor 198-961 (4.7k pullup)

 *    11 : 100k beta 3950 1% thermistor (4.7k pullup)

 *    12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)

 *    13 : 100k Hisens 3950  1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"

 *    20 : the PT100 circuit found in the Ultimainboard V2.x

 *    60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950

 *    66 : 4.7M High Temperature thermistor from Dyze Design

 *    70 : the 100K thermistor found in the bq Hephestos 2

 * 

 *       1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.

 *                              (but gives greater accuracy and more stable PID)

 *    51 : 100k thermistor - EPCOS (1k pullup)

 *    52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)

 *    55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)

 * 

 *  1047 : Pt1000 with 4k7 pullup

 *  1010 : Pt1000 with 1k pullup (non standard)

 *   147 : Pt100 with 4k7 pullup

 *   110 : Pt100 with 1k pullup (non standard)

 *

 *         Use these for Testing or Development purposes. NEVER for production machine.

 *   998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.

 *   999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.

 *

 * :{ '0': "Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950  1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '66':"Dyze Design 4.7M High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595",'998':"Dummy 1", '999':"Dummy 2" }

 */

#define TEMP_SENSOR_0 1 // type sonde température tête 1 (lié à la table correspondante dans thermistortable.h)

#define TEMP_SENSOR_1 1 // type sonde température tête 2

#define TEMP_SENSOR_2 0

#define TEMP_SENSOR_3 0

#define TEMP_SENSOR_BED 1 // type sonde température lit chauffant

 

// Dummy thermistor constant temperature readings, for use with 998 and 999

//#define DUMMY_THERMISTOR_998_VALUE 25

//#define DUMMY_THERMISTOR_999_VALUE 100

 

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings

// from the two sensors differ too much the print will be aborted.

//#define TEMP_SENSOR_1_AS_REDUNDANT

#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10

 

// Extruder temperature must be close to target for this long before M109 returns success

#define TEMP_RESIDENCY_TIME 10  // (seconds)

#define TEMP_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one

#define TEMP_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

 

// Bed temperature must be close to target for this long before M190 returns success

#define TEMP_BED_RESIDENCY_TIME 10  // (seconds)

#define TEMP_BED_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one

#define TEMP_BED_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

 

// The minimal temperature defines the temperature below which the heater will not be enabled It is used

// to check that the wiring to the thermistor is not broken.

// Otherwise this would lead to the heater being powered on all the time.

#define HEATER_0_MINTEMP 5

#define HEATER_1_MINTEMP 5

#define HEATER_2_MINTEMP 5

#define HEATER_3_MINTEMP 5

#define BED_MINTEMP 5

 

// When temperature exceeds max temp, your heater will be switched off.

// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!

// You should use MINTEMP for thermistor short/failure protection.

#define HEATER_0_MAXTEMP 300   // températures max acceptées

#define HEATER_1_MAXTEMP 300

#define HEATER_2_MAXTEMP 275

#define HEATER_3_MAXTEMP 275

#define BED_MAXTEMP 150

 

//===========================================================================

//============================= PID Settings ================================

//===========================================================================

// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning

 

// Comment the following line to disable PID and enable bang-bang.

#define PIDTEMP // activer pour utiliser la métode PID et commenter si utilisation d'un relais externe.

#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current  // puissance max envoyées aux têtes chauffantes

#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current

#if ENABLED(PIDTEMP)

  //#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.

  //#define PID_DEBUG // Sends debug data to the serial port.

  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX

  //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay //commutation lente si utilisation d'un relais mécanique

  //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)

                                  // Set/get with gcode: M301 E[extruder number, 0-2] //PID différent pour chaque tête d'extrusion

  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature

                                  // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // il peut être nécessaire d'augmenter cette valeur

  #define K1 0.95 //smoothing factor within the PID

 

  // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it

  // *Ultimaker*  //Creatr HS

  #define  DEFAULT_Kp 12    // Valeurs de PID

  #define  DEFAULT_Ki 0.20

  #define  DEFAULT_Kd 110.0

 

  // MakerGear

  //#define  DEFAULT_Kp 7.0

  //#define  DEFAULT_Ki 0.1

  //#define  DEFAULT_Kd 12

 

  // Mendel Parts V9 on 12V

  //#define  DEFAULT_Kp 63.0

  //#define  DEFAULT_Ki 2.25

  //#define  DEFAULT_Kd 440

 

#endif // PIDTEMP

 

//===========================================================================

//============================= PID > Bed Temperature Control ===============

//===========================================================================

// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis

//

// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.

// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,

// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.

// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.

// If your configuration is significantly different than this and you don't understand the issues involved, you probably

// shouldn't use bed PID until someone else verifies your hardware works.

// If this is enabled, find your own PID constants below.

//#define PIDTEMPBED // mode PID ou Bang Bang (relais) pour le lit chauffant

 

//#define BED_LIMIT_SWITCHING

 

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.

// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)

// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,

// so you shouldn't use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)

#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current //puissance maxi envoyée au lit chauffant

 

#if ENABLED(PIDTEMPBED)

 

  //#define PID_BED_DEBUG // Sends debug data to the serial port.

 

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

  //from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)

  #define  DEFAULT_bedKp 10.00

  #define  DEFAULT_bedKi .023

  #define  DEFAULT_bedKd 305.4

 

  //120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)

  //from pidautotune

  //#define  DEFAULT_bedKp 97.1

  //#define  DEFAULT_bedKi 1.41

  //#define  DEFAULT_bedKd 1675.16

 

  // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.

#endif // PIDTEMPBED

 

// @section extruder

 

// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.

// It also enables the M302 command to set the minimum extrusion temperature

// or to allow moving the extruder regardless of the hotend temperature.

// *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***

#define PREVENT_COLD_EXTRUSION

#define EXTRUDE_MINTEMP 150 // sécurité température mini avant autorisation extrusion

 

// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.

// Note that for Bowden Extruders a too-small value here may prevent loading.

#define PREVENT_LENGTHY_EXTRUDE

#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH)

 

//===========================================================================

//======================== Thermal Runaway Protection =======================

//===========================================================================

 

/**

 * Thermal Protection protects your printer from damage and fire if a

 * thermistor falls out or temperature sensors fail in any way.

 *

 * The issue: If a thermistor falls out or a temperature sensor fails,

 * Marlin can no longer sense the actual temperature. Since a disconnected

 * thermistor reads as a low temperature, the firmware will keep the heater on.

 *

 * If you get "Thermal Runaway" or "Heating failed" errors the

 * details can be tuned in Configuration_adv.h

 */

 

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders

#define THERMAL_PROTECTION_BED     // Enable thermal protection for the heated bed

 

//===========================================================================

//============================= Mechanical Settings =========================

//===========================================================================

 

// @section machine

 

// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics

// either in the usual order or reversed

//#define COREXY

//#define COREXZ

//#define COREYZ

//#define COREYX

//#define COREZX

//#define COREZY

 

// Enable this option for Toshiba steppers

//#define CONFIG_STEPPERS_TOSHIBA

 

//===========================================================================

//============================== Endstop Settings ===========================

//===========================================================================

 

// @section homing

 

// Specify here all the endstop connectors that are connected to any endstop or probe.

// Almost all printers will be using one per axis. Probes will use one or more of the

// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.

#define USE_XMIN_PLUG // déclaration des fin de course mini

#define USE_YMIN_PLUG

#define USE_ZMIN_PLUG

//#define USE_XMAX_PLUG

//#define USE_YMAX_PLUG

//#define USE_ZMAX_PLUG

 

// coarse Endstop Settings

#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

 

#if DISABLED(ENDSTOPPULLUPS)

  // fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined

  //#define ENDSTOPPULLUP_XMAX

  //#define ENDSTOPPULLUP_YMAX

  //#define ENDSTOPPULLUP_ZMAX

  //#define ENDSTOPPULLUP_XMIN

  //#define ENDSTOPPULLUP_YMIN

  //#define ENDSTOPPULLUP_ZMIN

  //#define ENDSTOPPULLUP_ZMIN_PROBE

#endif

 

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).

#define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.  //inversion de la logique des fin de course

#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.

#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

#define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

 

// Enable this feature if all enabled endstop pins are interrupt-capable.

// This will remove the need to poll the interrupt pins, saving many CPU cycles.

//#define ENDSTOP_INTERRUPTS_FEATURE

 

//=============================================================================

//============================== Movement Settings ============================

//=============================================================================

// @section motion

 

/**

 * Default Settings

 *

 * These settings can be reset by M502

 *

 * You can set distinct factors for each E stepper, if needed.

 * If fewer factors are given, the last will apply to the rest.

 *

 * Note that if EEPROM is enabled, saved values will override these.

 */

 

/**

 * Default Axis Steps Per Unit (steps/mm)

 * Override with M92

 *                                      X, Y, Z, E0 [, E1[, E2[, E3]]]

 */

#define DEFAULT_AXIS_STEPS_PER_UNIT   { (100.0/3)*4, (100.0/3)*4, 9699.0/10, 99.30} // nbre de pas des moteurs par tour

 

/**

 * Default Max Feed Rate (mm/s)

 * Override with M203

 *                                      X, Y, Z, E0 [, E1[, E2[, E3]]]

 */

#define DEFAULT_MAX_FEEDRATE          { 400, 400, 40, 400 } // vitesse max mm/s

 

/**

 * Default Max Acceleration (change/s) change = mm/s

 * (Maximum start speed for accelerated moves)

 * Override with M201

 *                                      X, Y, Z, E0 [, E1[, E2[, E3]]]

 */

#define DEFAULT_MAX_ACCELERATION      { 9000, 9000, 100, 10000 }  // accélérations max mm/s

 

/**

 * Default Acceleration (change/s) change = mm/s

 * Override with M204

 *

 *   M204 P    Acceleration

 *   M204 R    Retract Acceleration

 *   M204 T    Travel Acceleration

 */

#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E acceleration for printing moves  //accélérations par défaut

#define DEFAULT_RETRACT_ACCELERATION  3000    // E acceleration for retracts

#define DEFAULT_TRAVEL_ACCELERATION   3000    // X, Y, Z acceleration for travel (non printing) moves

 

/**

 * Default Jerk (mm/s)

 *

 * "Jerk" specifies the minimum speed change that requires acceleration.

 * When changing speed and direction, if the difference is less than the

 * value set here, it may happen instantaneously.

 */

#define DEFAULT_XJERK                 15.0 // écart de vitesse mini avant accélération

#define DEFAULT_YJERK                 15.0

#define DEFAULT_ZJERK                  0.4

#define DEFAULT_EJERK                  5.0

 

 

//===========================================================================

//============================= Z Probe Options =============================

//===========================================================================

// @section probes

 

//

// Probe Type

// Probes are sensors/switches that are activated / deactivated before/after use.

//

// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.

// You must activate one of these to use Auto Bed Leveling below.

//

// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.

//

 

// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.

// For example an inductive probe, or a setup that uses the nozzle to probe.

// An inductive probe must be deactivated to go below

// its trigger-point if hardware endstops are active.

//#define FIX_MOUNTED_PROBE

 

// The BLTouch probe emulates a servo probe.

// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.

//#define BLTOUCH // zone de configuration du BLTouch

 

// Z Servo Probe, such as an endstop switch on a rotating arm.

//#define Z_ENDSTOP_SERVO_NR 0

//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles

 

// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.

//#define Z_PROBE_SLED

//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

 

// Z Probe to nozzle (X,Y) offset, relative to (0, 0).

// X and Y offsets must be integers.

//

// In the following example the X and Y offsets are both positive:

// #define X_PROBE_OFFSET_FROM_EXTRUDER 10

// #define Y_PROBE_OFFSET_FROM_EXTRUDER 10

//

//    +-- BACK ---+

//    |           |

//  L |    (+) P  | R <-- probe (20,20)

//  E |           | I

//  F | (-) N (+) | G <-- nozzle (10,10)

//  T |           | H

//    |    (-)    | T

//    |           |

//    O-- FRONT --+

//  (0,0)

#define X_PROBE_OFFSET_FROM_EXTRUDER 10  // X offset: -left  +right  [of the nozzle]

#define Y_PROBE_OFFSET_FROM_EXTRUDER 10  // Y offset: -front +behind [the nozzle]

#define Z_PROBE_OFFSET_FROM_EXTRUDER 0   // Z offset: -below +above  [the nozzle]

 

// X and Y axis travel speed (mm/m) between probes

#define XY_PROBE_SPEED 8000

// Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH)

#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z

// Speed for the "accurate" probe of each point

#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)

// Use double touch for probing

//#define PROBE_DOUBLE_TOUCH

 

//

// Allen Key Probe is defined in the Delta example configurations.

//

 

// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***

//

// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.

// Example: To park the head outside the bed area when homing with G28.

//

// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.

//

// For a servo-based Z probe, you must set up servo support below, including

// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.

//

// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.

// - Use 5V for powered (usu. inductive) sensors.

// - Otherwise connect:

//   - normally-closed switches to GND and D32.

//   - normally-open switches to 5V and D32.

//

// Normally-closed switches are advised and are the default.

//

 

//

// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)

// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the

// default pin for all RAMPS-based boards. Most boards use the X_MAX_PIN by default.

// To use a different pin you can override it here.

//

// WARNING:

// Setting the wrong pin may have unexpected and potentially disastrous consequences.

// Use with caution and do your homework.

//

//#define Z_MIN_PROBE_PIN X_MAX_PIN

 

//

// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.

// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.

//

//#define Z_MIN_PROBE_ENDSTOP

 

// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.

// The Z_MIN_PIN will then be used for both Z-homing and probing.

#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

 

// To use a probe you must enable one of the two options above!

 

// Enable Z Probe Repeatability test to see how accurate your probe is

//#define Z_MIN_PROBE_REPEATABILITY_TEST

 

/**

 * Z probes require clearance when deploying, stowing, and moving between

 * probe points to avoid hitting the bed and other hardware.

 * Servo-mounted probes require extra space for the arm to rotate.

 * Inductive probes need space to keep from triggering early.

 *

 * Use these settings to specify the distance (mm) to raise the probe (or

 * lower the bed). The values set here apply over and above any (negative)

 * probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.

 * Only integer values >= 1 are valid here.

 *

 * Example: `M851 Z-5` with a CLEARANCE of 4  =>  9mm from bed to nozzle.

 *     But: `M851 Z+1` with a CLEARANCE of 2  =>  2mm from bed to nozzle.

 */

#define Z_CLEARANCE_DEPLOY_PROBE   10 // Z Clearance for Deploy/Stow

#define Z_CLEARANCE_BETWEEN_PROBES  5 // Z Clearance between probe points

 

//

// For M851 give a range for adjusting the Z probe offset

//

#define Z_PROBE_OFFSET_RANGE_MIN -20

#define Z_PROBE_OFFSET_RANGE_MAX 20

 

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1

// :{ 0:'Low', 1:'High' }

#define X_ENABLE_ON 0 

#define Y_ENABLE_ON 0

#define Z_ENABLE_ON 0

#define E_ENABLE_ON 0 // For all extruders

 

// Disables axis stepper immediately when it's not being used.

// WARNING: When motors turn off there is a chance of losing position accuracy!

#define DISABLE_X false

#define DISABLE_Y false

#define DISABLE_Z false

// Warn on display about possibly reduced accuracy

//#define DISABLE_REDUCED_ACCURACY_WARNING

 

// @section extruder

 

#define DISABLE_E false // For all extruders

#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled

 

// @section machine

 

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.

#define INVERT_X_DIR true // inversion du sens de rotation des moteurs

#define INVERT_Y_DIR false

#define INVERT_Z_DIR false

 

// @section extruder

 

// For direct drive extruder v9 set to true, for geared extruder set to false.

#define INVERT_E0_DIR true  // inversion du sens de rotation des extrudeurs

#define INVERT_E1_DIR false

#define INVERT_E2_DIR true

#define INVERT_E3_DIR false

 

// @section homing

 

//#define Z_HOMING_HEIGHT 4  // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...

                             // Be sure you have this distance over your Z_MAX_POS in case.

 

// ENDSTOP SETTINGS:

// Sets direction of endstops when homing; 1=MAX, -1=MIN

// :[-1, 1]

#define X_HOME_DIR -1

#define Y_HOME_DIR -1

#define Z_HOME_DIR -1

 

#define min_software_endstops false // If true, axis won't move to coordinates less than HOME_POS.

#define max_software_endstops true  // If true, axis won't move to coordinates greater than the defined lengths below.

 

// @section machine

 

// Travel limits after homing (units are in mm)

#define X_MIN_POS 0

#define Y_MIN_POS 0

#define Z_MIN_POS 0

#define X_MAX_POS 270 // course de déplacement maxi des axes

#define Y_MAX_POS 280

#define Z_MAX_POS 180

 

//===========================================================================

//========================= Filament Runout Sensor ==========================

//===========================================================================

//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament

                                 // RAMPS-based boards use SERVO3_PIN. For other boards you may need to define FIL_RUNOUT_PIN.

                                 // It is assumed that when logic high = filament available

                                 //                    when logic  low = filament ran out

#if ENABLED(FILAMENT_RUNOUT_SENSOR)

  #define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.

  #define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.

  #define FILAMENT_RUNOUT_SCRIPT "M600"

#endif

 

//===========================================================================

//============================ Mesh Bed Leveling ============================

//===========================================================================

 

//#define MESH_BED_LEVELING    // Enable mesh bed leveling.

 

#if ENABLED(MESH_BED_LEVELING)

  #define MESH_INSET 10        // Mesh inset margin on print area

  #define MESH_NUM_X_POINTS 3  // Don't use more than 7 points per axis, implementation limited.

  #define MESH_NUM_Y_POINTS 3

  #define MESH_HOME_SEARCH_Z 4  // Z after Home, bed somewhere below but above 0.0.

 

  //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]

 

  //#define MANUAL_BED_LEVELING  // Add display menu option for bed leveling.

 

  #if ENABLED(MANUAL_BED_LEVELING)

    #define MBL_Z_STEP 0.025  // Step size while manually probing Z axis.

  #endif  // MANUAL_BED_LEVELING

 

  // Gradually reduce leveling correction until a set height is reached,

  // at which point movement will be level to the machine's XY plane.

  // The height can be set with M420 Z<height>

  #define ENABLE_LEVELING_FADE_HEIGHT

 

#endif  // MESH_BED_LEVELING

 

//===========================================================================

//============================ Auto Bed Leveling ============================

//===========================================================================

// @section bedlevel

 

/**

 * Select one form of Auto Bed Leveling below.

 *

 *  If you're also using the Probe for Z Homing, it's

 *  highly recommended to enable Z_SAFE_HOMING also!

 *

 * - 3POINT

 *   Probe 3 arbitrary points on the bed (that aren't collinear)

 *   You specify the XY coordinates of all 3 points.

 *   The result is a single tilted plane. Best for a flat bed.

 *

 * - LINEAR

 *   Probe several points in a grid.

 *   You specify the rectangle and the density of sample points.

 *   The result is a single tilted plane. Best for a flat bed.

 *

 * - BILINEAR

 *   Probe several points in a grid.

 *   You specify the rectangle and the density of sample points.

 *   The result is a mesh, best for large or uneven beds.

 */

//#define AUTO_BED_LEVELING_3POINT

//#define AUTO_BED_LEVELING_LINEAR

//#define AUTO_BED_LEVELING_BILINEAR

 

/**

 * Enable detailed logging of G28, G29, M48, etc.

 * Turn on with the command 'M111 S32'.

 * NOTE: Requires a lot of PROGMEM!

 */

//#define DEBUG_LEVELING_FEATURE

 

#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)

 

  // Set the number of grid points per dimension.

  #define ABL_GRID_POINTS_X 3

  #define ABL_GRID_POINTS_Y ABL_GRID_POINTS_X

 

  // Set the boundaries for probing (where the probe can reach).

  #define LEFT_PROBE_BED_POSITION 15

  #define RIGHT_PROBE_BED_POSITION 170

  #define FRONT_PROBE_BED_POSITION 20

  #define BACK_PROBE_BED_POSITION 170

 

  // The Z probe minimum outer margin (to validate G29 parameters).

  #define MIN_PROBE_EDGE 10

 

  // Probe along the Y axis, advancing X after each column

  //#define PROBE_Y_FIRST

 

  #if ENABLED(AUTO_BED_LEVELING_BILINEAR)

 

    // Gradually reduce leveling correction until a set height is reached,

    // at which point movement will be level to the machine's XY plane.

    // The height can be set with M420 Z<height>

    #define ENABLE_LEVELING_FADE_HEIGHT

 

    // 

    // Experimental Subdivision of the grid by Catmull-Rom method.

    // Synthesizes intermediate points to produce a more detailed mesh.

    // 

    //#define ABL_BILINEAR_SUBDIVISION

    #if ENABLED(ABL_BILINEAR_SUBDIVISION)

      // Number of subdivisions between probe points

      #define BILINEAR_SUBDIVISIONS 3

    #endif

 

  #endif

 

#elif ENABLED(AUTO_BED_LEVELING_3POINT)

 

  // 3 arbitrary points to probe.

  // A simple cross-product is used to estimate the plane of the bed.

  #define ABL_PROBE_PT_1_X 15

  #define ABL_PROBE_PT_1_Y 180

  #define ABL_PROBE_PT_2_X 15

  #define ABL_PROBE_PT_2_Y 20

  #define ABL_PROBE_PT_3_X 170

  #define ABL_PROBE_PT_3_Y 20

 

#endif

 

/**

 * Commands to execute at the end of G29 probing.

 * Useful to retract or move the Z probe out of the way.

 */

//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"

 

 

// @section homing

 

// The center of the bed is at (X=0, Y=0)

//#define BED_CENTER_AT_0_0

 

// Manually set the home position. Leave these undefined for automatic settings.

// For DELTA this is the top-center of the Cartesian print volume.

//#define MANUAL_X_HOME_POS 0

//#define MANUAL_Y_HOME_POS 0

//#define MANUAL_Z_HOME_POS 0 // Distance between the nozzle to printbed after homing

 

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.

//

// With this feature enabled:

//

// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.

// - If stepper drivers time out, it will need X and Y homing again before Z homing.

// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).

// - Prevent Z homing when the Z probe is outside bed area.

//#define Z_SAFE_HOMING

 

#if ENABLED(Z_SAFE_HOMING)

  #define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2)    // X point for Z homing when homing all axis (G28).

  #define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2)    // Y point for Z homing when homing all axis (G28).

#endif

 

// Homing speeds (mm/m)

#define HOMING_FEEDRATE_XY (70*60)

#define HOMING_FEEDRATE_Z  (20*60)

 

//=============================================================================

//============================= Additional Features ===========================

//=============================================================================

 

// @section extras

 

//

// EEPROM

//

// The microcontroller can store settings in the EEPROM, e.g. max velocity...

// M500 - stores parameters in EEPROM

// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).

// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.

//define this to enable EEPROM support

//#define EEPROM_SETTINGS

 

#if ENABLED(EEPROM_SETTINGS)

  // To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:

  #define EEPROM_CHITCHAT // Please keep turned on if you can.

#endif

 

//

// Host Keepalive

//

// When enabled Marlin will send a busy status message to the host

// every couple of seconds when it can't accept commands.

//

#define HOST_KEEPALIVE_FEATURE        // Disable this if your host doesn't like keepalive messages

#define DEFAULT_KEEPALIVE_INTERVAL 2  // Number of seconds between "busy" messages. Set with M113.

 

//

// M100 Free Memory Watcher

//

//#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose

 

//

// G20/G21 Inch mode support

//

//#define INCH_MODE_SUPPORT

 

//

// M149 Set temperature units support

//

//#define TEMPERATURE_UNITS_SUPPORT

 

// @section temperature

 

// Preheat Constants

#define PREHEAT_1_TEMP_HOTEND 180

#define PREHEAT_1_TEMP_BED     70

#define PREHEAT_1_FAN_SPEED     0 // Value from 0 to 255

 

#define PREHEAT_2_TEMP_HOTEND 240

#define PREHEAT_2_TEMP_BED    80

#define PREHEAT_2_FAN_SPEED     0 // Value from 0 to 255

 

//

// Nozzle Park -- EXPERIMENTAL

//

// When enabled allows the user to define a special XYZ position, inside the

// machine's topology, to park the nozzle when idle or when receiving the G27

// command.

//

// The "P" paramenter controls what is the action applied to the Z axis:

//    P0: (Default) If current Z-pos is lower than Z-park then the nozzle will

//        be raised to reach Z-park height.

//

//    P1: No matter the current Z-pos, the nozzle will be raised/lowered to

//        reach Z-park height.

//

//    P2: The nozzle height will be raised by Z-park amount but never going over

//        the machine's limit of Z_MAX_POS.

//

//#define NOZZLE_PARK_FEATURE

 

#if ENABLED(NOZZLE_PARK_FEATURE)

  // Specify a park position as { X, Y, Z }

  #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }

#endif

 

//

// Clean Nozzle Feature -- EXPERIMENTAL

//

// When enabled allows the user to send G12 to start the nozzle cleaning

// process, the G-Code accepts two parameters:

//   "P" for pattern selection

//   "S" for defining the number of strokes/repetitions

//

// Available list of patterns:

//   P0: This is the default pattern, this process requires a sponge type

//       material at a fixed bed location, the cleaning process is based on

//       "strokes" i.e. back-and-forth movements between the starting and end

//       points.

//

//   P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T"

//       defines the number of zig-zag triangles to be done. "S" defines the

//       number of strokes aka one back-and-forth movement. As an example

//       sending "G12 P1 S1 T3" will execute:

//

//          --

//         |  (X0, Y1) |     /\        /\        /\     | (X1, Y1)

//         |           |    /  \      /  \      /  \    |

//       A |           |   /    \    /    \    /    \   |

//         |           |  /      \  /      \  /      \  |

//         |  (X0, Y0) | /        \/        \/        \ | (X1, Y0)

//          --         +--------------------------------+

//                       |________|_________|_________|

//                           T1        T2        T3

//

// Caveats: End point Z should use the same value as Start point Z.

//

// Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments

// may change to add new functionality like different wipe patterns.

//

//#define NOZZLE_CLEAN_FEATURE

 

#if ENABLED(NOZZLE_CLEAN_FEATURE)

  // Number of pattern repetitions

  #define NOZZLE_CLEAN_STROKES  12

 

  // Specify positions as { X, Y, Z }

  #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}

  #define NOZZLE_CLEAN_END_POINT   {100, 60, (Z_MIN_POS + 1)}

 

  // Moves the nozzle to the initial position

  #define NOZZLE_CLEAN_GOBACK

#endif

 

//

// Print job timer

//

// Enable this option to automatically start and stop the

// print job timer when M104/M109/M190 commands are received.

// M104 (extruder without wait) - high temp = none, low temp = stop timer

// M109 (extruder with wait) - high temp = start timer, low temp = stop timer

// M190 (bed with wait) - high temp = start timer, low temp = none

//

// In all cases the timer can be started and stopped using

// the following commands:

//

// - M75  - Start the print job timer

// - M76  - Pause the print job timer

// - M77  - Stop the print job timer

#define PRINTJOB_TIMER_AUTOSTART

 

//

// Print Counter

//

// When enabled Marlin will keep track of some print statistical data such as:

//  - Total print jobs

//  - Total successful print jobs

//  - Total failed print jobs

//  - Total time printing

//

// This information can be viewed by the M78 command.

//#define PRINTCOUNTER

 

//=============================================================================

//============================= LCD and SD support ============================

//=============================================================================

 

// @section lcd

 

//

// LCD LANGUAGE

//

// Here you may choose the language used by Marlin on the LCD menus, the following

// list of languages are available:

//    en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it,

//    kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, tr, uk, test

//

// :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'tr':'Turkish', 'uk':'Ukrainian', 'test':'TEST' }

//

#define LCD_LANGUAGE en // langue d'affichage du lcd

 

//

// LCD Character Set

//

// Note: This option is NOT applicable to Graphical Displays.

//

// All character-based LCD's provide ASCII plus one of these

// language extensions:

//

//  - JAPANESE ... the most common

//  - WESTERN  ... with more accented characters

//  - CYRILLIC ... for the Russian language

//

// To determine the language extension installed on your controller:

//

//  - Compile and upload with LCD_LANGUAGE set to 'test'

//  - Click the controller to view the LCD menu

//  - The LCD will display Japanese, Western, or Cyrillic text

//

// See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language

//

// :['JAPANESE', 'WESTERN', 'CYRILLIC']

//

#define DISPLAY_CHARSET_HD44780 JAPANESE  // table de caractères du lcd

 

//

// LCD TYPE

//

// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,

// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels

// (ST7565R family). (This option will be set automatically for certain displays.)

//

// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display! // installer la librairie U8glib en cas d'utilisation d'un lcd

//                 https://github.com/olikraus/U8glib_Arduino

//

//#define ULTRA_LCD   // Character based

//#define DOGLCD      // Full graphics display

 

//

// SD CARD

//

// SD Card support is disabled by default. If your controller has an SD slot,

// you must uncomment the following option or it won't work.

//

//#define SDSUPPORT // décommenter pour activer la carte SD

 

//

// SD CARD: SPI SPEED

//

// Uncomment ONE of the following items to use a slower SPI transfer

// speed. This is usually required if you're getting volume init errors.

//

//#define SPI_SPEED SPI_HALF_SPEED

//#define SPI_SPEED SPI_QUARTER_SPEED

//#define SPI_SPEED SPI_EIGHTH_SPEED

 

//

// SD CARD: ENABLE CRC

//

// Use CRC checks and retries on the SD communication.

//

//#define SD_CHECK_AND_RETRY

 

//

// ENCODER SETTINGS

//

// This option overrides the default number of encoder pulses needed to

// produce one step. Should be increased for high-resolution encoders.

//

//#define ENCODER_PULSES_PER_STEP 1 // nombre de pas du bouton rotatif

 

//

// Use this option to override the number of step signals required to

// move between next/prev menu items.

//

//#define ENCODER_STEPS_PER_MENU_ITEM 5 // nombre de pas du bouton rotatif avant changement de menu

 

/**

 * Encoder Direction Options

 *

 * Test your encoder's behavior first with both options disabled.

 *

 *  Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.

 *  Reversed Menu Navigation only?    Enable REVERSE_MENU_DIRECTION.

 *  Reversed Value Editing only?      Enable BOTH options.

 */

 

//

// This option reverses the encoder direction everywhere

//

//  Set this option if CLOCKWISE causes values to DECREASE

//

//#define REVERSE_ENCODER_DIRECTION // si le bouton rotatif doit monter ou baisser une valeur dans le sens horaire

 

//

// This option reverses the encoder direction for navigating LCD menus.

//

//  If CLOCKWISE normally moves DOWN this makes it go UP.

//  If CLOCKWISE normally moves UP this makes it go DOWN.

//

//#define REVERSE_MENU_DIRECTION  // si bouton rotatif doit monter ou descendre dans le menu en sens horaire 

 

//

// Individual Axis Homing

//

// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

//

//#define INDIVIDUAL_AXIS_HOMING_MENU

 

//

// SPEAKER/BUZZER

//

// If you have a speaker that can produce tones, enable it here.

// By default Marlin assumes you have a buzzer with a fixed frequency.

//

//#define SPEAKER  // activer le buzzer

 

//

// The duration and frequency for the UI feedback sound.

// Set these to 0 to disable audio feedback in the LCD menus.

//

// Note: Test audio output with the G-Code:

//  M300 S<frequency Hz> P<duration ms>

//

//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100

//#define LCD_FEEDBACK_FREQUENCY_HZ 1000

 

//

// CONTROLLER TYPE: Standard

//

// Marlin supports a wide variety of controllers.

// Enable one of the following options to specify your controller.

//

 

//

// ULTIMAKER Controller.

//

//#define ULTIMAKERCONTROLLER

 

//

// ULTIPANEL as seen on Thingiverse.

//

//#define ULTIPANEL

 

//

// Cartesio UI

// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface

//

//#define CARTESIO_UI

 

//

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)

// http://reprap.org/wiki/PanelOne

//

//#define PANEL_ONE

 

//

// MaKr3d Makr-Panel with graphic controller and SD support.

// http://reprap.org/wiki/MaKr3d_MaKrPanel

//

//#define MAKRPANEL

 

//

// ReprapWorld Graphical LCD

// https://reprapworld.com/?products_details&products_id/1218

//

//#define REPRAPWORLD_GRAPHICAL_LCD

 

//

// Activate one of these if you have a Panucatt Devices

// Viki 2.0 or mini Viki with Graphic LCD

// http://panucatt.com

//

//#define VIKI2

//#define miniVIKI

 

//

// Adafruit ST7565 Full Graphic Controller.

// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/

//

//#define ELB_FULL_GRAPHIC_CONTROLLER

 

//

// RepRapDiscount Smart Controller.

// http://reprap.org/wiki/RepRapDiscount_Smart_Controller 

//

// Note: Usually sold with a white PCB.

//

//#define REPRAP_DISCOUNT_SMART_CONTROLLER

 

//

// GADGETS3D G3D LCD/SD Controller

// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel

//

// Note: Usually sold with a blue PCB.

//

//#define G3D_PANEL

 

//

// RepRapDiscount FULL GRAPHIC Smart Controller

// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller

//

//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // active le lcd 12864

 

//

// MakerLab Mini Panel with graphic

// controller and SD support - http://reprap.org/wiki/Mini_panel

//

//#define MINIPANEL

 

//

// RepRapWorld REPRAPWORLD_KEYPAD v1.1

// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626

//

// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key

// is pressed, a value of 10.0 means 10mm per click.

//

//#define REPRAPWORLD_KEYPAD

//#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0

 

//

// RigidBot Panel V1.0

// http://www.inventapart.com/

//

//#define RIGIDBOT_PANEL

 

//

// BQ LCD Smart Controller shipped by

// default with the BQ Hephestos 2 and Witbox 2.

//

//#define BQ_LCD_SMART_CONTROLLER

 

//

// CONTROLLER TYPE: I2C

//

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C

// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C

//

 

//

// Elefu RA Board Control Panel

// http://www.elefu.com/index.php?route=product/product&product_id=53

//

//#define RA_CONTROL_PANEL

 

//

// Sainsmart YW Robot (LCM1602) LCD Display

//

//#define LCD_I2C_SAINSMART_YWROBOT

 

//

// Generic LCM1602 LCD adapter

//

//#define LCM1602

 

//

// PANELOLU2 LCD with status LEDs,

// separate encoder and click inputs.

//

// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.

// For more info: https://github.com/lincomatic/LiquidTWI2

//

// Note: The PANELOLU2 encoder click input can either be directly connected to

// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).

//

//#define LCD_I2C_PANELOLU2

 

//

// Panucatt VIKI LCD with status LEDs,

// integrated click & L/R/U/D buttons, separate encoder inputs.

//

//#define LCD_I2C_VIKI

 

//

// SSD1306 OLED full graphics generic display

//

//#define U8GLIB_SSD1306

 

//

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules

//

//#define SAV_3DGLCD

#if ENABLED(SAV_3DGLCD)

  //#define U8GLIB_SSD1306

  #define U8GLIB_SH1106

#endif

 

//

// CONTROLLER TYPE: Shift register panels

//

// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH

// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD

//

//#define SAV_3DLCD

 

//=============================================================================

//=============================== Extra Features ==============================

//=============================================================================

 

// @section extras

 

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino

#define FAST_PWM_FAN

 

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency

// which is not as annoying as with the hardware PWM. On the other hand, if this frequency

// is too low, you should also increment SOFT_PWM_SCALE.

//#define FAN_SOFT_PWM

 

// Incrementing this by 1 will double the software PWM frequency,

// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.

// However, control resolution will be halved for each increment;

// at zero value, there are 128 effective control positions.

#define SOFT_PWM_SCALE 0

 

// Temperature status LEDs that display the hotend and bed temperature.

// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.

// Otherwise the RED led is on. There is 1C hysteresis.

//#define TEMP_STAT_LEDS

 

// M240  Triggers a camera by emulating a Canon RC-1 Remote

// Data from: http://www.doc-diy.net/photo/rc-1_hacked/

//#define PHOTOGRAPH_PIN     23

 

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure

//#define SF_ARC_FIX

 

// Support for the BariCUDA Paste Extruder.

//#define BARICUDA

 

//define BlinkM/CyzRgb Support

//#define BLINKM

 

// Support for an RGB LED using 3 separate pins with optional PWM

//#define RGB_LED

#if ENABLED(RGB_LED)

  #define RGB_LED_R_PIN 34

  #define RGB_LED_G_PIN 43

  #define RGB_LED_B_PIN 35

#endif

 

/*********************************************************************\

* R/C SERVO support

* Sponsored by TrinityLabs, Reworked by codexmas

**********************************************************************/

 

// Number of servos

//

// If you select a configuration below, this will receive a default value and does not need to be set manually

// set it manually if you have more servos than extruders and wish to manually control some

// leaving it undefined or defining as 0 will disable the servo subsystem

// If unsure, leave commented / disabled

//

//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

 

// Delay (in microseconds) before the next move will start, to give the servo time to reach its target angle.

// 300ms is a good value but you can try less delay.

// If the servo can't reach the requested position, increase it.

#define SERVO_DELAY 300

 

// Servo deactivation

//

// With this option servos are powered only during movement, then turned off to prevent jitter.

//#define DEACTIVATE_SERVOS_AFTER_MOVE

 

/**********************************************************************\

 * Support for a filament diameter sensor

 * Also allows adjustment of diameter at print time (vs  at slicing)

 * Single extruder only at this point (extruder 0)

 *

 * Motherboards

 * 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector

 * 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)

 * 301 - Rambo  - uses Analog input 3

 * Note may require analog pins to be defined for different motherboards

 **********************************************************************/

// Uncomment below to enable

//#define FILAMENT_WIDTH_SENSOR

 

#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75  //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software.  Used for sensor reading validation

 

#if ENABLED(FILAMENT_WIDTH_SENSOR)

  #define FILAMENT_SENSOR_EXTRUDER_NUM 0   //The number of the extruder that has the filament sensor (0,1,2)

  #define MEASUREMENT_DELAY_CM        14   //measurement delay in cm.  This is the distance from filament sensor to middle of barrel

 

  #define MEASURED_UPPER_LIMIT         3.30  //upper limit factor used for sensor reading validation in mm

  #define MEASURED_LOWER_LIMIT         1.90  //lower limit factor for sensor reading validation in mm

  #define MAX_MEASUREMENT_DELAY       20     //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM  and lower number saves RAM)

 

  #define DEFAULT_MEASURED_FILAMENT_DIA  DEFAULT_NOMINAL_FILAMENT_DIA  //set measured to nominal initially

 

  //When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status.  Status will appear for 5 sec.

  //#define FILAMENT_LCD_DISPLAY

#endif

 

#endif // CONFIGURATION_H

 



régler le Pid

Un changement de tête d'impression ou de thermistance, entraîne des modifications des température, ou de leur lecture. il faut alors recalibrer les paramètres dans Marlin firmware.

Pour commencer, il faut afficher dans l'imprimante une température que l'on utilise souvent comme référence (par exemple 230° si vous imprimez de l'ABS).

Il faut ensuite vérifier que la température réelle est la même, en mettant un thermomètre supportant cette T° contre la tête d'impression.

Si il y a un gros écart, il va falloir refaire la table des températures située dans thermistortable.h de Marlin.

 

Si la thermistance posée est connue et livrée avec sa table, pas de problème, il suffit de la reporter dans le fichier thermistortable.h.

 

Autrement, il va falloir la refaire manuellement.


refaire la table de températures

Dans le logiciel Arduino ouvrir votre firmware Marlin et aller dans l'onglet Configuration_adv.

Au paragraphe Show temperature ADC value, il va falloir activer la ligne:

//#define SHOW_TEMP_ADC_VALUES

(en retirant les deux slashs avant le dièse.)

Puis téléverser dans l'imprimante.

 

Ensuite, dans l'onglet Configuration.h, paragraphe Thermal setting

(ligne 262).

Il faut regarder quel type de thermistance est déclaré, sur la photo de droite, on voit qu'il y a 7 pour les extrudeurs, ce qui réfère à la table 7 dans thermistortable.h.

 

Ceci, fait il va falloir lancer le logiciel que vous utilisez pour imprimer, comme Simplify3D.

Une fois connecté à l'imprimante, le logiciel lance des commandes M105, ce qui renvoie les infos de température, mais maintenant il y a en plus la valeur correspondante à la température de la thermistance qui nous intéresse. Si ce n'est pas automatique, il faudra envoyer la commande M105 manuellement.

 

 


le plus dur reste à faire:

Maintenant la ligne M105 affiche: T0: 230° et à coté la valeur, par ex: 66.

 

avec le thermomètre sur la tête T0, il falloir monter petit à petit la température, jusqu'à atteindre réellement 230°, attendre quelques secondes que ça se stabilise, et noter la nouvelle valeur.

 

Il va falloir faire de même pour toutes les autres températures de la liste, comme mon exemple ci-contre.

 

Attention, si vous avez déclaré le même type de thermistance pour les extrudeurs et le lit chauffant dans Configuration.h (voir photo précédente), mais que ce ne sont plus les mêmes suite au remplacement de l'une d'elle, il vaut mieux entrer les nouvelles valeurs dans une liste inutilisée (comme je l'ai fait sur la photo 2 en déclarant la liste 7).

C'est très facile, à chaque rangée, reporter la valeur de thermistance, puis sa température associée.

faire un test de compilation, et si il n'y a pas eu d'erreur, téléverser, et vérifier que les température affichées et réelle sont similaires.


Faire un Auto tune

Si les températures sont maintenant à peu près justes, il va falloir recalibrer la gestion de la montée en température, et sa stabilité.

Ces valeurs sont situé dans l'onglet Configuration.h, à la ligne 327.

Kp, Ki, et Kd, désignés PID.

 

Il faut pour cela envoyer une commande M303 dans votre logiciel, sous cette forme:

M303 E0 S230 C8

 

M303 est la commande de l'autotune, E0 est l'extrudeur 0, S230 est la température de référence pour le test, et C8 est le nombre de test à effectuer.

 

L'imprimante va effectuer le nombre de montées en température demandées, et calculer les réactions du bloc chauffant, la précision du résultat en dépend.

A la fin du test, les 3 valeurs pour Kp, Ki et Kd vont s'afficher avec la phrase:

PID Autotune Finished ! Place the Kp, Ki and Kd Constants in the configuration.h

 

Il suffira de reporter ces valeurs dans le fichier Configuration.h et de téléverser le firmware Marlin dans l'imprimante.


Commentaires

La parole est à vous:

Commentaires: 15 (Discussion fermée)
  • #1

    Jean-Luc (samedi, 15 avril 2017 10:48)

    Merci pour ta réponse rapide.
    La carte que je compte installer est très certainement une Rumba, d'abord parce que ton expérience m'aide dans ce choix et aussi pour disposer d'un afficheur. Comme je l'ai dit, l'autonomie de l'imprimante est bien pratique à l'usage grâce au RPI mais je ne sais pas ce que voit ou exploite l'imprimante. J'avoue ne pas trop savoir ce qu'affiche l'écran (pas vraiment fouillé)
    Le fonctionnement actuel est ok, enfin je parle de la mécanique, évidement dès que j'utilise autre chose que du PLA c'est la galère, rien ne tient et fini souvent à la corbeille. Le PLA tient mieux mais 1/3 c'est aussi poubelle. J'ai changé le Bed sous garantie au début car il se décollait par dessous, mais malgré des dizaines de réglages rien ne s'est vraiment amélioré.
    J'ai un écran qui pourrait aller je pense avec la Rumba (ali...) et je pourrai vraiment utiliser cette imprimante qui prend plus de place qu'elle n'est utile jusque là. Et mieux encore, quelques fois elle s'arrête simplement en cours de route (plantage je suppose) alors quand pour une fois ça ne se décolle pas, ça part quand même à la corbeille et il faut tout recommencer.
    Pour la mécanique, je possède un tour et une CNC que j'ai conçu et monté et qui est assez puissante pour usiner aussi les métaux avec une très bonne précision.
    Pour ton port USB, je pense que tu peux mettre un cordon avec prise chassis que tu pourrais mettre en façade (j'en ai déjà acheté chez Ali)
    Bon j'arrête là mon roman, et si je peux aider, je suis informaticien, électronicien, et il y a quelques années mécanicien, alors n’hésites pas.
    Jean-Luc

  • #2

    Intermediate time table 2018 (lundi, 18 septembre 2017 08:39)


    Telangana Intermediate Time Table 2018 – TSBSE 12th Exam Date Sheet, Download Telangana Board 12th Exam Schedule, TS Board Exam Date Sheet

  • #3

    Marc (dimanche, 22 octobre 2017 11:55)

    Merci pour cette mine d'infos.

  • #4

    Rudy (samedi, 21 avril 2018 08:14)

    I am going to rebuild my HS. I am following your log for a long time ;-)
    Where did you buy the parts?
    Am i correct?
    Rumba+ V1.0
    TFT 32
    MKS 6600
    MKS adapter board
    Steppers (which did you use?)
    220v heater
    Solid state relay

    And where did you get alle these parts?

    Is the firmware on your site the last version?

    Many, MANY!!! thanks,
    Rudy

  • #5

    Alexandre (vendredi, 11 mai 2018 12:29)

    Bonjour et merci car grâce à vous j'ai réussi a faire revivre une leapfrog creatr dual. J'ai vu que vous avez acheté votre filament à Angoulême, seriez-vous de Charente? Si c'est le cas ce serait un réel plaisir pour moi de vous rencontrer en voisin ( Je suis de Saintes) . Mon Mail : philibert.70@gmail.com.

  • #6

    Mauritius (mercredi, 16 mai 2018 23:48)

    Bonjour je trouve ton blog de très bonne qualité bien illustré et bien documenté.j y es trouve pas mal de renseignements très utile,j aurai une petite question j ai moi même montée une imprimante 3d et j utilise un écran mks Tft32 qui fonctionne nickel, j aimerai mettre à jour le firware je le télécharge sur la racine de la carte sd 32 go le met sur mon Tft32 32 et la ca marche pas j ai essayer plusieurs sd rien n y fais

  • #7

    mauritius (samedi, 19 mai 2018 11:08)

    bonour ,j ai bien mis les fichier mks_pic ,mks_config ,et mkstft28 sur la racine de ma sd ,que j ai formater avec sd formatter ensuite je met la sd dans mks tft 32 que reboot mais pas ca charge pas la firware ,je vais te faire un recap depuis le debut peut que j ai fait une mauvaise manipulation , j ai recu ma carte je l ai alimantaiter via ma board mks 1.4 gens l ecriture etais en chinois , j ai telecharge la version en anglais v 2.0.1que j ai mis sur la racine de ma sd (toujour fichier mks_pic,mks_conf,mkstft28) ensuite j ai mis ma sd dans ma tft 32 que j ai rebooter resultat sa a bien fontionner j ai l ecriture en anglais j ai fais des teste deplacement moteur ,verifier les temperature tout fonctionne nikel , je viens de voir qu il y a une nouvelle version v 3.0.1 en anglais j aimerais la mettre a la place de l ancienne v2.0.1,par contre j ai pas fais gaffe j ai effacer la sd avec le premire fireware que j ai installer voila ou j en suis aujour d hui

  • #8

    mauritius (samedi, 19 mai 2018 19:06)

    slt oui sur ma tft 32 j ai bien selectionner la sd

  • #9

    Mauritius (mardi, 22 mai 2018 10:26)

    Slt ces bon j ai fini par trouvé le problème,tu as testé des longue impression plus de 10 h avec la mks rumba

  • #10

    Krupa Nicolas (lundi, 22 octobre 2018 19:29)

    Bonjour, auriez vous plus d'info concernant les connecteur d'encodeur. J'aimerais brancher des encodeurs rotatif i2c.

  • #11

    Thomas (mercredi, 19 février 2020 00:50)

    Hi,
    Very nice article!
    How did u manage the communication between the megatronics and olimex?
    I have no clue where tu start looking in the marlin code.
    Friendly regards!

  • #12

    RIM HAN (dimanche, 17 mai 2020 17:44)

    Bonjour
    J'espère que vous allez bien!
    Je voudrais savoir SVP comment configurer une imprimante 3D.J'essai de fabriquer ma propre imprimante 3D en utilisant la carte RADDS+ARDUINO DUE+5 RAPS128 et 1 Extrudeuse bondtech.
    Le problème c'est que je ne sais pas s'il faut juste suivre ce qu'il y'a dans la configuration.h du firmware MARLIN ou bien faudrait-il ajouter d'autres programmes (VOID/LOOP..)?.
    NB:
    C'est ma première expérience dans ce domaine.

    j'espère avoir un retour de votre part ASAP SVP.
    Je vous en remercie d'avance.

  • #13

    RIM HAN (lundi, 18 mai 2020 00:05)

    Je te remercie.

  • #14

    Uniraj ba 2nd year result (jeudi, 04 juin 2020 07:25)

    Rajasthan University ba 2nd year result, check uniraj ba part 2 result and result.uniraj ba 2 year through baexamresult.in

  • #15

    BA Part 3 result.uniraj (jeudi, 04 juin 2020 07:28)

    hi


Réponses:

Hello Rudy,

 

you 're right, add eventualy these things:

 

(buyed on Aliexpress)

 

https://fr.aliexpress.com/item/Silicone-Thermal-Conductive-Adhesive-Solidification-Curing-Glue-Heat-Sink-Paste-Sealers/32803571136.html

and

https://fr.aliexpress.com/item/5-x-Aluminum-Cooling-PCS-9x9x12MM-Chipset-Heat-Sink-RAM-Radiator-Heatsink-Cooler/32777238484.html

 

No the firmware is not the lastest version, but it works well with Leapfrog printers Creatr and Creatr HS with all of functionnality.

 

Steppers? did you mean the stepper motors? (the original ones) or the drivers? (Drv8825)

 

Contact me by email if you need help.

 


Bonjour Alexandre, je t'ai répondu par mail.


Bonjour, Mauritius.

Les fichiers ne doivent pas être dans un répertoire, et placés directement sur la racine d'une carte SD formatée en Fat32, puis faire un reset, ou débrancher/rebrancher l'écran, la mise à jour doit démarrer immédiatement. Une fois la mise à jour terminée, les fichiers sur la SD seront différents, il faut donc avant la mise à jour, prendre tous les fichiers à la source d'origine et les copier sur la SD et pas se contenter de modifier ceux sur la SD.


Mauritius, question bête: tu as tes fichiers sur une SD, mais as-tu sélectionné lire la SD et non  pas l'USB sur ton écran du TFT?


Bonjour Nicolas, non je n'ai pas trouvé d'info sur le branchement d'encodeur, pas plus que le branchement d'autres de leurs accessoires. Ce n'est pourtant pas faute d'avoir cherché: et c'est bien tout le problème avec Makerbase, il sortent des produits sans doc technique et passent à autre choses sans plus de support, c'est bien dommage.


@rim han

Le fichier configuration.h suffit à faire fonctionner l'imprimante du début à la fin de l'impression, pour une utilisation courante c'est tout à fait suffisant. L'impression débute et elle s'arrête à la fin, il ne faut plus qu'elle bouge tant que la pièce imprimée n'a pas été retirée du plateau.

Les commandes dont tu parles sont plus pour la faire fonctionner en mode démo avec des mouvement répétitifs ou redémarrer en fin de cycle.

Imprimante 3D - Imprimante3D - 3DPrinter - 3DPrinter - infill - raft - layer - hot end - stepper - driver - axis -